Иммунологические взаимоотношения в системе мать плод. Взаимоотношение материнского организма и плода. HLA-комплекс и осложненная беременность


^ Иммунологические механизмы взаимоотношений мать-плод

Сохранение беременности осуществляется за счет антигенной незрелости плода, защитных (протективных) свойств матки, отсутствия общей сосудистой системы матери и плода и повышения продукции глюкокортикостероидов для супрессии иммунного ответа матери.

Иммунологические конфликты во многих случаях служат основой патологии взаимоотношений мать-плод. Плод по существу является своеобразным аллотрансплантатом. Причины того, что в одних случаях беременность развивается нормально, а в других возникают иммунологически обусловленные осложнения, разнообразны. Многочисленные специфические и неспецифические факторы обеспечивают выживаемость плода, несмотря на его антигенную несовместимость. К ним относятся:

Особая организация пограничных между матерью и плодом тканей (трофобласт, децидуальная оболочка);

Защитное влияние антител, вырабатываемых против специфических антигенов плода;

Блокирующее действие иммунных комплексов антиген+антитело на плаценте;

Общее супрессивное влияние на иммунные клетки плацентарных белковых и стероидных гормонов, возникших при беременности.

Супрессивное действие лимфоцитов плода;

Блокирующие антитела у беременных против HLA-DR антигенов плода.

Нормальное течение беременности обеспечивается определённым состоянием иммунной системы, при котором плод развивается нормально под влиянием изоантител, Т-лимфоцитов и натуральных киллеров, привлекаемых в плаценту и выделяющих цитокины, стимулирующие рост и дифференцировку тканей плода. В этом заключается целесообразность несовместимости между матерью и плодом. Сдвиги в этой иммунологической сети, индуцированные различными факторами, могут привести к развитию патологии беременности. Причиной этого могут быть генетическая предрасположенность, обусловливающая особые варианты несовместимости (резус-антигены) и др. Некоторая степень иммунодепрессии при беременности, предохраняющая плод от гибели, обеспечивается гормональными и другими неспецифическими факторами. Целый ряд различных иммунологических показателей в течении беременности изменены (субпопуляции клеток, иммуноглобулины, реакция на антигены и аллергены). Еще более значительные изменения иммунореактивности выявлены при различной патологии беременности. При позднем токсикозе беременных обнаружена сенсибилизация лейкоцитов беременных к антигенам плода и плодных оболочек. Спонтанные первичные выкидыши и гибель плода могут обусловливаться наличием антифосфолипидных антител. Присутствие этих антител может сопровождаться тромбозами, тромбоцитопенией и другими признаками аутоиммунной реакции. Изучение уровня ЦИК при позних токсикозах показало, что они могут явиться причиной иммунокомплексных поражений органов и тканей (почки - нефропатия, эклампсия, печень, сосуды, кожа).

Резус-конфликт , лежащий в основе гемолитической болезни новорождённых, является другим примером иммунопатологии беременности. Основой этого конфликта служит наличие у плода Rh (D) антигена и отсутствие его у матери. Образующиеся при этом в организме матери неполные IgG-антитела могут проникать через плаценту и вызывать разрушение эритроцитов плода. Методом выявления антирезусных IgG-антител является непрямая проба Кумбса.

Непрямая проба Кумбса - непрямой антиглобулиновый тест (обнаруживает неполные антитела) позволяет выявить атипичные антитела в крови, в том числе аллоантитела, к чужим антигенам эритроцитов. Свое название - непрямая - получила вследствие того, что реакция протекает в два этапа. Первоначально сыворотка крови больного, содержащая неполные антитела, взаимодействует с добавленным корпускулярным антиген-диагностикумом без видимых проявлений. На втором этапе внесенная антиглобулиновая сыворотка взаимодействует с неполными антителами, адсорбированными на антигене, с появлением видимого осадка. Переливание гомологичных (аллогенных) эритроцитов или беременность резус-отрицательной матери Rh (-) резус положительным плодом Rh (+) - наиболее частые причины образования этих антиэритроцитарных антител.

Таким образом, значимая роль иммунологических реакций в патологии репродукции свидетельствует о целесообразности изучения показателей иммунной системы и проведения таким пациентам иммуномодулирующей терапии.
^ Задания для заключительного контроля знаний
11. Укажите основные причины неэффективности трансплантации костного мозга:

A) Болезнь "трансплантат против хозяина"

B) Отторжение трансплантату

C) Рецидив злокачественной опухоли

D) Инфекционные осложнения

E) Все ответы верны
12. Что такое аутологическая трансплантация?

A) Трансплантация между двумя генетически идентичными лицами

B) Трансплантация, при которой донором и реципиентом является одно и то же лицо

C) Трансплантация между генетически неидентичными лицами

D) Трансплантация между двумя разными биологическими видами

E) Все ответы верны
13. Что такое алогенетическая гетерологическая трансплантация?

A) Трансплантация, при которой донор и реципиент одно лицо

B) Трансплантация между генетически разными лицами одного вида

C) Трансплантация между существами разных видов

D) Трансплантация между двумя генетически идентичными лицами

E) Все ответы верны
14. Что такое трансплантация?

A) Это процесс, при котором клетки, ткани или органы берут у одного лица и перемещают к другому или на другое место тому же лицу

B) Это процесс хирургического перемещения тканей, органов от одного человека к другому

C) Это процесс обмена тканями между субъектами популяции

D) Это процесс, который отображает сущность хирургических манипуляций

E) Это процесс, при котором от одного человека берут или ткани, или органы и перемещают к другой или на другое место тому же лицу
15. Что такое болезнь "трансплантат против хозяина"?

A) Болезнь, которая возникла в результате активации зрелых Т-клеток реципиента при введении ему клеток от донора, отличных от его собственных по HLA-генотипу

B) Болезнь, которая передается трансмиссивным путем

C) Реакция на введение анатоксину

D) Болезнь, которая возникает у больных муковисцидозом после применения амброксола

E) Все ответы верны
16. Укажите этапы приживлення костного мозга:

A) Первичное приживление

B) Увеличение количества клеток

C) Дозревание

D) Все, кроме С

E) A, B, C
17. После трансплантации костного мозга первой возобновляется:

A) Эритроидная система

B) Лимфоидная система

C) Гранулоцитарная система

D) Возобновление всех систем происходит одновременно

E) Эритроидная и гранулоцитарная возобновляются одновременно первые
18. Реципиентам костного мозга антибиотикотерапия должна начинаться при наличии:

A) Лихорадки

B) Признаков поражения центральной нервной системы

C) Катаральных проявлений

D) Ни одно из приведенных состояний не требует проведения антибиотикотерапии

E) А, В и С
19. В течение позднего периода после трансплантации костного мозга к типичным проявлениям инфекционных осложнений не относится:

B) Инфекции кожи, особенно вызванные вирусом ветреной оспы, опоясывающего лишая

D) Бактериальная пневмония

E) Все ответы верны
20. В течение промежуточного периода после трансплантации костного мозга типичными проявлениями инфекционных осложнений является:

A) Интерстициальная пневмония

B) Инфекции кожи

C) Инфекции центральной нервной системы

D) Инфекции желудочно-кишечного тракта

E) Все ответы верны
21. Типичными инфекционными осложнениями в раннем периоде после трансплантации костного мозга является:

A) Бактериемия

B) Грибковые инфекции

C) Реактивация герпетической инфекции

D) Все вышеупомянутые верные

E) Все вышеупомянутые неверные
22. Для определения степени близости генотипа между мужем и женой при бесплодном браке первоочередно используют:

A) Смешанную лейкоцитарную реакцию

B) Определение группы крови

C) Пробу Кумбса

D) Исследование ДНК
23. Iмуноглобулiн какого класса преимущественно образуется в слизистых оболочках?

В) Секреторный IgA

Е) IgЕ
24. Отметьте, какой гуморальный фактор неспецифического иммунитета находится в клетках слизистых оболочек организма:

А) Лизоцимы

В) Пропердiни

С) Нормальные антитела

D) Iнтерлейкiни

Е) Дофамини
25. Отметьте характерную реакцию большинства физиологичных выделений, которые подавляють развитие микроорганизмов:

А) Кислотная

В) Щелочная

С) Нейтральная

D) Кислотный – нейтральная

Е) Кислотный – щелочная
26. Естественно приобретенный пассивный иммунитет - это:

А) иммунитет, который развивается при вакцинации

В) иммунитет, обусловленный введеням анатоксинов

С) иммунитет, обусловленный переносом антитела через плаценту

D) Иммунитет, обусловленный введением сывороток

Е) Иммунитет после перенесенных детских заболеваний.
27. Способностями преодолевать плацентный барьер владеют

D) белки матери

Е) Глобулины
28. У генетически близкого мужчины и женщины

А. чаще встречаются бесплодные браки

В. чаще встречается многоплодная беременность

С. чаще развивается несовместимость матери и плода по системе ABO

D. реже развивается несовместимость матери и плода по системе ABO

Е. Частише возникает резус – конфликт
29. Иммунные процессы во время беременности

А) активизируются

В) подавляются, формируется временная толерантность

С) извращаются

D) характеризуются индукцией цитотоксичности

Е) не изменяются
30. Материнские антитела к HLA-антигенам отца

А) появляются во время беременности

В) исчезают во время беременности

С) сорбируются плацентой

D) разрушаются плодом

Е) не выделяются
31. Резус-конфликт возможен

А) между Rh(+) -матерью и Rh(-) -отцом

В) между Rh(-) - матерью и Rh(+) -отцом

С) между Rh(-) - матерью и Rh(+) -плодом

D) между Rh(+) - матерью и Rh(-) плодом

Е) между Rh(+)-матерью и Rh(+)-плодом
32. Плацента есть:

A) функциональный барьер между тканями матери и плода

B) ткани, формирующие плаценту, содержат ту же генетическую информацию, что и ткани плода

C) плацента непроницаема для иммунокомпетентных клеток матери и плода

D) плацента проницаема для антител матери и плода

E) является органом гуморальной регуляции
33. К появлению антиспермальных антител в организме женщины приводят:

A) Нарушение целостности слизистых оболочек половых путей (химические способы контрацепции, воспаление, коагуляция эрозии шейки матки).

B) Высокие цифры лейкоцитов, в т. ч. лимфоцитов, в сперме.

C) Высокий процент аномальных и “старых” сперматозоидов (при редкой половой жизни).

D) Оральный и анальный секс (попадание спермы в желудочно-кишечный тракт).

E) Попадание большого количества сперматозоидов в брюшную полость (особенности морфологии половых путей, неправильное про ведение методов внутриматочной инсеминации).

F) Попытки экстракорпорального оплодотворения в прошлом (гормональный «удар» по гипоталамо-гипофизарно-яичниковой оси, травма при заборе яйцеклеток).

G) Все вышеназванное

E) Ни один из вышеназванных факторов
34. Укажите, что является основной причиной развития гестозов:

A) функциональные изменения в ЦНС в результате нарушения водно-электролитного баланса

B) нарушение маточно-плацентарного барьера в сочетании со сниженной иммунологической толерантностью

C) сенсибилизация материнского организма антигенами плода

D) деструктивные изменения в печени и почках

E) все вышеперечисленное
35. Иммунологическое бесплодие у женщины может быть обусловлено:

A) несовместимость с партнером по HLA-системе

B) высокая совместимость с партнером по HLA-системе

C) выработка антиспермальных аутоантител у женщины

D) выработка антиспермальных аутоантител у мужчины

E) вторичный иммунодефицит
36. Иммунопатогенез гестозов включает в себя:

A) поступление в организм матери большого количества антигенов плода и выработка антител к ним;

B) фиксация циркулирующих иммунокомплексов в клубочках почек;

C) развитие аллергических реакций на антигены плода;

D) деструктивные процессы в печени;

E) снижение проницаемости маточно-плацентарного барьера;
37. Материнский организм сохраняет беременность посредством выработки следующих иммунорегуляторных агентов:

A) блокирующие антитела

B) глюкокортикостероиды

C) прогестерон

D) Т-супрессоры

E) Т-хелперы

F) HLA-антитела к плоду
38. Иммуносупрессивные агенты, вырабатываемые плацентой и плодом для сохранения беременности, следующие:

A) T-хелперы

B) T-супрессоры

C) B-лимфоциты

D) L-фетопротеин

E) хорионический гонадотропин

F) HLA-антигени плода
39. В основе спонтанных абортов лежат следующие дефекты иммунной системы матери:

A) продукция цитокинов или растворимых иммунных факторов, которым свойственно повреждающее влияние на плод или плаценту;

B) продукция аутоантител к фосфолипидам, которые выполняют функции молекул адгезии и необходимые для сливания клеток в синцитий при формировании синцитиотрофобласта;

C) продукция антиидиотипических антител, которые связывают блокирующие антитела.

D) слабое распознавание HLA-антигенов плода и недостаточная продукция блокировочных антител;

E) суттева разница женщины и мужчины за HLA-антигеним составом
40. Препаратом выбора для лечения обострения тяжелой формы хронической герпес-вирусной инфекции (генитальная форма) у беременной в сроки 15-16 недель является:

A) ацикловир

B) противогерпетический иммуноглобулин

C) валтрекс

D) амиксин

E) виферон
Верные ответы на вопросы: 11 E, 12 B, 13 B, 14 A, 15 A, 16 E, 17 A, 18 E, 19 A, 20 E, 21 D, 22 A, 23 D, 24 A, 25 A, 26 C, 27 C, 28 A, 29 B, 30 C, 31 C, 32 C, 33 G, 34 B, 35 ABCE, 36 ABCD, 37 ABC, 38 BDE, 39 ABCD, 40 B.
^ Технологіна карта проведення практичоного заняття


№ п/п

Этапи

Час

(хв.)


Засоби

Обладнання

Месце

проведения


1

підготовчий

10

Пед.

журнал


Учебова кімната

2

Перевірка і коррекція початкового рівня знань-умінь:

Тестовий контроль,

Устне опитування

35
45


Завдання-тести;

Персональний ком’ютер

Учебова кімната

3

Самостійна курація хворих

45

Хворі

Данні лабораторного та інструментального достідження

палати

4.

Аналіз проведеной курсації

45

Хворі, набор імуно-грам

палати

5.

Робота в імунологічній лабораторії

45

Набор імуно-грам

Лабораторія

6.

Тестовий контроль кінцевого рівня знань

30

Тести

Учебова кімната

5

Підведення ітогів заняття

15

Учебова кімната

Всього

5уч.

годин

Бесплодие, невынашивание, привычный выкидыш - эти печальные проблемы не всегда связаны только с организмом женщины. О причинах иммунных нарушений репродукции и способах их установления рассказывает кандидат медицинских наук, руководитель московского Центра иммунологии и репродукции Игорь ГУЗОВ.

По статистике, 10 - 15 процентов всех беременностей оканчивается выкидышем. Вы можете о нем не знать - крошечный эмбрион погибает еще до наступления месячных. Та же картина с искусственным оплодотворением (ЭКО): заместительной гормонотерапией организм матери к предстоящей беременности подготовлен идеально, только расти, малыш!

В чем же дело?

Невынашивание, как и , - не какая-то отдельная болезнь. Это следствие неполадок и в репродуктивной системе, и вообще в организме будущих матери и отца. Это симптом: нормальное развитие плода под угрозой, а потому жизнь его невозможна. Причин тут несколько.

Беременность - уникальное явление: девять месяцев сосуществуют два абсолютно генетически разных организма - матери и плода. Ведь лишь наполовину ребенок наследует материнские клетки - остальные белки и гены отцовские, чужие. Их взаимодействие обеспечивают белки тканевой совместимости - это как бы маркеры на клетках, с помощью которых иммунная система женщины распознает своих и чужих.

Вне беременности иммунные клетки, циркулирующие в организме как разведчики, выслеживают на поверхности всех без исключения клеток белковый код - белки тканевой совместимости. И если обнаруживаются клетки с измененной структурой (это занесенные микробы или измененные клетки самого организма), организм немедленно выдает - атипические клетки уничтожаются. Кстати, это ключевой момент в развитии онкозаболеваний, и вопросы повышения иммунитета у врачей-онкологов едва ли не на первом месте.

При беременности, если бы процесс был таким однозначным, плод неизбежно погибал бы - внутри "чужие" клетки! Но этого не происходит - во время беременности плод и его клеточные структуры неразличимы для иммунной системы материнского организма. Иначе - существует биобарьер на пути клеток-бойцов за иммунное единообразие, и беременность развивается и оканчивается счастливо.

Иммунологическое взаимодествие

Однако современные исследования выявили - барьер этот мнимый: либо гуморальный иммунитет матери включается, и вырабатываются антитела на фактор плода, либо клеточный - клетки недовольны пришельцами, и иммунный ответ следует незамедлительно - отторжение (выкидыш). Но все не так однозначно - так же, как функциям всех органов свойственны возбуждение и торможение, так и в иммунной системе может включаться и активное отторжение, и иммунологическая толерантность (совместимость). Она-то и позволяет сохранить трансплантат - именно так рассматривают будущего ребенка иммунологи. Эта дилемма иммунной системы определяет причины невынашивания, что выражается или в сбоях иммунной регуляции организма, или в нарушениях иммунологического взаимодействия между организмами матери и плода.

Лишь к концу 80-х годов ученые вплотную подошли к решению проблем невынашивания, и возникло новое направление на стыке акушерства, гинекологии и перинатологии - иммунология репродукции. И хотя теория накопила немало ценной информации, буквально рвущейся к практике, ввести в лечебный обиход новые знания пока сложно - тормозят дело банальное отсутствие средств и организации обследования пациенток. По крайней мере, в нашей стране.

А между тем практическая помощь оказывается все успешнее. По всем группам иммунных нарушений. Например, аутоиммунные нарушения матери. Это ревматизм, заболевания почек и мышечной системы, аллергические реакции, наконец, тяжелое аутоиммунное заболевание системная красная волчанка. В этих случаях в организме возникают извращенные иммунные реакции, когда антитела (белки) направлены против собственных тканей. Провоцирует их активность плохая наследственность или тяжелые инфекции, и в таких случаях беременность под угрозой.

Однако специальный анализ крови может вовремя определить сбой, суть которого - нарушение кровообращения в мелких сосудах плаценты - оболочки зарождающейся жизни. Этот микротромбоз можно распознать и лечить на самых ранних сроках, и тогда не прерывается и развивается по всем физиологическим законам до конца. Этот путь перспективен, что доказывает простое уравнение: чем выше уровень антител (по-научному они называются антифосфолипиды), тем вероятнее выкидыш - более 80 процентов. А при своевременном назначении специального лечения, направленного на снижение свертываемости крови, вероятность донашивания беременности составляет тоже 80 процентов!

Успех определяется воздействием не на причину, а на следствие - разжижая кровь аспирином, мы восстанавливаем нормальное кровообращение между матерью и плодом. Кстати, раньше, лет десять назад аспирин применялся в неоправданно больших дозах, что нередко приводило к нарушениям питания мозга и верхней части ребенка. Сегодня такие аномалии исключены - аспирин берется в дозах, в 10 - 15 раз меньших, чем стандартная норма. Для усиления аспиринового эффекта применяют гепарин - это естественное вещество редко вызывает аллергические реакции, не проходит через плаценту, так что какие-либо воздействия на плод невозможны, а эффект полезного аспирина удваивается.

Еще одна причина невынашиваемости - антитела, направленные на клеточные ядра. Опасность тут возрастает потому, что они легко проникают через плаценту и составляют угрозу для клеток плода. И такие нарушения можно диагностировать на ранних сроках и успешно лечить.

Аллоиммунные причины невынашивания беременности

Гораздо сложнее бороться с аллоиммунными нарушениями - тут речь о взаимоотношениях матери и плода как части отцовского организма. Чтобы беременность успешно развивалась, она должна быть распознана и признана иммунной системой матери. Если же материнские клетки вяло, неохотно реагируют на вновь прибывших - это белки, унаследованные от отца клетки сперматозоидов, - реакция совместимости задерживается, и даже может пропустить сигнал отторжения - чужое! И снова несостоявшаяся беременность.

Самое печальное, что это стойкий механизм: выкидыши подряд в такой ситуации - частое явление. Но есть специальные тесты, позволяющие распознать сходства или различия между организмом матери и плода. Если реакция на плод замедленная (это можно определить по уровню антител в крови), то, специальным образом можно провести иммунизацию матери лимфоцитами отца.


Плод генетически, а следовательно и иммунологически, чужероден организму матери из-за наличия в его геноме отцовских генов. Таким образом, он фактически представляет аллотрансплантат, который в соответствии с законами иммунологии должен быть отторгнут. Однако сам факт существования плацентарных животных свидетельствует о том, что в данном случае непреложные законы иммунологии каким-то образом удается обойти. Более того, судя по осложнениям, возникающим при беременности сингенным плодом (такое возможно в экспериментах с генетически чистыми линиями животных), генетические различия матери и плода даже благоприятствуют нормальному развитию беременности.
Различия между матерью и плодом по генам гистосовместимости играют важную роль, о чем свидетельствуют данные о зависимости размера плаценты от степени таких различий. При развитии сингенного плода плацента имеет минимальный объем, по мере усиления различий по генам гистосовместимости ее размер увеличивается, а при предварительной иммунизации самки антигенами полового партнера размер плаценты плода превышают нормальный.
Предположение о слабой экспрессии в тканях плода антигенов гистосовместимости в силу «иммунологической незрелости» было довольно быстро отвергнуто, поскольку обнаружено, что в тканях плода антигены MHC экспрессируются уже на ранних стадиях эмбриогенеза. В конечном счете общепринятым стало представление о плоде как своеобразном иммунологически привилегированном органе. Природа этой привилегированности до сих пор до конца не раскрыта, но очевидно, что она совершенно уникальна, хотя и полностью вписывается в известные иммунологические закономерности. В значительной степени привилегированное положение плода обусловлено структурой плаценты и наличием или отсутствием в ней иммунологически значимыми факторов (рис. 4.19).
Особенности экспрессии антигенов гистосовместимости в трофобласте
Одним из важнейших механизмов защиты плода от атак со стороны иммунной системы матери признают наличие барьера в виде трофобласта (части плаценты, относящейся к организму плода), не экспрессирующего молекулы MHC. Отсутствие в нем молекул MHC-II не вызывает удивления, поскольку их тканевое распределение ограничено. Однако молекулы MHC-I экспресируются всеми ядросодержащими клетками организма, и их отсутствие на клетках трофобласта привлекает особое внимание.

Рис. 4.19. Факторы, противостоящие отторжению плода, в оболочках плаценты. Схематично представлена локализация в различных слоях плаценты факторов, предотвращающих развитие реакции отторжения плода как аллотрансплантата

Молекулы MHC-I - HLA-A и HLA-B отсутствуют на клетках внешней оболочки - синцитиотрофобласта, а также на клетках ворсинчатого цито- тотрофобласта. Молекулы HLA-C на клетках трофобласта экспрессируются. Биологический смысл этого «исключения из правила» пока неясен. В трофобласте выявлены особенности транспорта цитозольных пептидов, препятствующие их встраиванию в молекулы MHC, без чего невозможно формирование стабильной молекулы MHC-I. Таким образом, механизмы, препятствующие экспрессии молекул MHC-I на клетках трофобласта, связаны с посттранскрипционным уровнем формирования макромолекул. Показано, что экспрессия молекул MHC-I на клетках трофобласта блокирована настолько надежно, что не индуцируется даже при действии интер- феронов.
В то же время на клетках цитотрофобласта, особенно ворсинчатого, выявлены «неклассические» молекулы MHC-I, относимые к подклассу Ib - HLA-E и HLA-G, в меньшей степени - HLA-F. Для этих молекул характерен ограниченный полиморфизм и, по-видимому, они не участвуют в презентации антигенов. Зато их распознают ингибиторные молекулы NK-клеток, а также у5Т-клеток и некоторых других лимфоцитов: молекулу HLA-G распознают рецепторы LILRB1, а HLA-E - рецетпоры CD94/NKG. Распознавание обусловливает генерацию сигналов, блокирующих цитолитическую активность лимфоцитов и другие проявления их активности. В результате альтернативного сплайсинга формируется несколько изоформ молекул HLA-G; изоформы 1-4 связаны с мембранами, изоформы 5-7 сек- ретируются в среду и также выявляются в плаценте. Спектр клеток трофобласта, вырабатывающих растворимую форму HLA-G, шире спектра клеток,

экспрессирующих мембранную форму этой молекулы. Как мембранные, так и растворимые (особенно G5) изоформы молекулы HLA-G способны блокировать активность лимфоцитов, несущих соответствующие рецепторы, прежде всего естественных киллеров. Зарегистрировано подавление под влиянием HLA-G способности цитотоксических лимфоцитов секретиро- вать IFNy и усиливать секрецию TGFp.
Таким образом, важный механизм, предотвращающий отторжение плода как аллогенного трансплантата - особый характер экспрессии молекул MHC-I на клетках трофобласта (отсутствие экспрессии классических молекул MHC, представляющих антигенный пептид, и экспрессия или секреция молекул, блокирующих активность естественных киллеров), что предотвращает сенсибилизацию организма матери антигенами плода и обеспечивает блокаду естественных киллеров.
Тем не менее, есть многочисленные свидетельства того, что до иммунной системы матери доходят иммуногенные сигналы от плода, о чем свидетельствует накопление в сыворотке рожавших женщин антител против HLA и других антигенов плодов, причем уровень и разнообразие этих антител возрастает с увеличением числа беременностей. Признаки сенсибилизации к антигенам плода проявляются и на Т-клеточном уровне. Однако эта сенсибилизация в норме не приводит к развитию реакции отторжения. Это обусловливает необходимость рассмотрения состояния различных звеньев иммунной системы матери, а также околоплодных оболочек - как материнских, так и плодных. Нет сомнений, что некоторые особенности иммунологической реактивности матери обусловлены эндокринными перестройками. Прогестерон, хорионический гонадоторопин и другие гормоны, уровень которых повышается при беременности, способствуют сдерживанию реакций, направленных на отторжение плода, однако эффект гормонов явно недостаточен для сохранения беременности MHC-несовместимым плодом, и большинство факторов сдерживания формируется в процессе морфогенеза плаценты в соответствии с законами функционирования и регуляции иммунной системы.
Клетки врожденного иммунитета в плаценте
Макрофаги присутствуют в плодных и материнских компонентах плаценты. На долю этих клеток приходится 10-20% лейкоцитов, содержащихся в децидуальной оболочке, где выявляют активированные формы макрофагов, однако синтез ими провоспалительных цитокинов IL-1, TNFa, IL-6, IL-8 ограничен. Эти цитокины имеют несомненные потенции к повреждению и отторжению плода. Они играют ключевую роль в нарушении беременности, вызванной инфекциями.
Дендритные клетки присутствуют в материнской части плаценты. Они представлены незрелыми и зрелыми миелоидными дендритными клетками. Преобладающий функциональный вариант - клетки DC2-rarn, ответственные за индукцию анергии Т-лимфоцитов. На дендритных клетках, как и на макрофагах, обнаружены молекулы ILT2 и ILT4, выступающие в качестве рецепторов молекул HLA-G. Дендритные клетки и макрофаги плаценты активно поглощают клетки неворсинчатого трофобласта, подвергающиеся апоптозу, что рассматривают как этап индукции иммунологической толерантности матери к антигенам плода, унаследованным от отца. Наконец, для АПК плаценты, прежде всего дендритных, характерен высокий уровень активности индолил-2,3-дезоксигеназы. Как известно, этот фермент катализирует превращение триптофана в N-формилкинуренин, который затем превращается в кинуренин. При этом формируется микроокружение, дефицитное по триптофану, - аминокислоте, лимитирующей биосинтез белка. Такое микроокружение характерно для участков локальной иммуносупрессии.
Содержание NK-клеток в децидуальной оболочке достигает 20-30% от числа клеток костномозгового происхождения. Практически всю популяцию образуют NK-клетки фенотипа CD56bright CD16-. Иногда их выделяют в особую субпопуляцию маточных NK-клеток (uNK). Выше уже было отмечено (см. раздел 2.4.1), что клетки с таким фенотипом активно секретируют цитокины, прежде всего IFNy, но обладают ограниченной цитолитической активностью. Проявлению активности естественных киллеров способствует экспрессия на клетках плода и трофобласта стрессорных молекул MICA и MICB, служащих индукторами активации NK-клеток, при отсутствии на них классических молекул MHC-I. Однако активность NK-клеток в трофобласте блокируется неклассическими молекулами HLA-G и HLA-E, экспрессируемыми клетками трофобласта, а также растворимыми формами этих молекул. Аналогичной, хотя и менее выраженной функцией обладают у5Т-клетки, содержание которых в трофобласте существенно повышено (до 25% против 2-3% в кровотоке). Однако роль у8Т-, как и NKT-клеток, в плаценте связана, скорее всего, со сдерживанием реакции отторжения, поскольку этим клеткам свойственна регуляторная функция, активно проявляемая ими в слизистых оболочках.
Особенности дифференцировки Т-клеток в организме беременных и в плаценте
Содержание Т-лимфоцитов в децидуальной оболочке достаточно высоко в начальный период после ее формирования, но к концу беременности их содержание снижается до 5-8% от числа клеток костномозгового происхождения. Значительная часть этих клеток (до 30%, против 5-8% в нормальной крови) экспрессирует мембранные молекулы HLA-DR, т.е. находится в активированном состоянии. Т-клетки представлены как CD8+, так и CD4+ лимфоцитами. Несмотря на отсутствие экспрессии молекул MHC-I на клетках трофобласта, среди CD8+ Т-лимфоцитов есть клетки, специфичные к антигенам плода, т.е. потенциальные киллеры, способные повредить ткани плода. Их проникновение в плод предотвращается с помощью механизма, проявляющегося при защите иммунологически привилегированных зон (см. выше): клетки трофобласта экспрессируют молекулы семейства TNF, способные индуцировать апоптоз клеток, несущих соответствующие рецепторы. Так, на клетках трофобласта обнаружены молекулы FasL, TRAIL, способные через взаимодействие соответственно с рецепторами Fas- (CD95) и DR-5 вызывать апоптоз эффекторных Т-клеток. Кроме того, активность Т-клеток подавляется в связи с дефицитом триптофана в микроокружении, о формировании которого говорилось выше.
Как известно, субпопуляции хелперных Т-лимфоцитов определяют направление развития иммунного ответа, которое обычно соответствует потребностям организма. При реакции на аллогенный трансплантат (в качестве аналога которого можно рассматривать плод) преобладает их дифференцировка в TM-клетки - продуценты IFNy. При беременности на системном уровне соотношение субпопуляций Т-хелперов изменяется незначительно и при этом выявляют лишь некоторое предпочтение диф- ференцировки в ^2-клетки в ущерб Th1- и ThH-хелперам. В децидуальной оболочке плаценты TW-клеток практически нет (вероятно, вследствие блокады их дифференцировки в региональных лимфатических узлах), тогда как ^2-клетки присутствуют, и их дифференцировка в региональных лимфатических узлах полностью сохранена. О реальной опасности TW-клеток и их продуктов для вынашивания плода свидетельствуют данные экспериментов с введением в плаценту мышей предварительно индуцированных TW-клеток: это приводит к выкидышу. Аналогичное введение ^2-клеток такого эффекта не вызывает. Решающую роль в реализации такого действия TW-клеток играет секретируемый ими IFNy, введение которого само по себе вызывает прерывание беременности.
Уже давно постулировали защитную роль супрессорных клеток, которые должны развиваться или аккумулироваться в плаценте. Данные, напрямую подтверждающие эти представления, получены после открытия естественных регуляторных Т-клеток. Содержание CD4+ CD25 + Foxp3+ клеток (регуляторные Т-лимфоциты) в циркулирующей крови беременных достигает максимума во II триместре беременности. После родов содержание этих клеток уже не отличается от нормы. Содержание функционально активных регуляторных CD4+ CD25+ Foxp3+ Т-клеток возрастает также в децидуальной оболочке, т.е. в зоне непосредственного контакта с тканями плода: на их долю приходится 14% от числа децидуальных CD4+ Т-лимфоцитов (в норме в периферической крови - около 5%). Развитию регуляторных Т-клеток в плаценте способствуют толеро- генные дендритные клетки. При самопроизвольном выкидыше содержание регуляторных T-клеток в плаценте существенно ниже. Накопление в плаценте регуляторных T-лимфоцитов не происходит у мышей, генетически предрасположенных к развитию спонтанных абортов, причем перенос им CD4+ CD25+ Т-клеток от нормальных сингенных животных предотвращает аборты.
Помимо естественных регуляторных клеток иммунопротективную роль в плаценте играют индуцированные (адаптивные) регуляторные Т-лим- фоциты типов Th3 и Tr1. Эти клетки секретируют супрессорные цитокины IL-10 и TGFp, подавляющие активность TM-клеток и их цитокинов. Дополнительную регуляторную роль играют естественные регуляторные Т-клетки типов NKT и у5Т, о которых уже говорилось.
Таким образом, динамика численности субпопуляций Т-лимфоцитов свидетельствует о предотвращении проникновения в плаценту или развития в ней TW-клеток, агрессивных в отношении плода, и накоплении естественных регуляторных клеток, предупреждающих развитие реакции отторжения.

В-клетки, гуморальный иммунитет и система комплемента
Исходное содержание В-клеток в децидуальной оболочке невелико (как и в кровотоке матери). Оно существенно возрастает в процессе беременности, достигая 13% в поздние сроки. Уже упоминалось о разнообразном спектре антител, в том числе направленных против молекул HLA (особенно I класса), - «следа» предшествующих беременностей. Развитию гуморального иммунного ответа, в том числе в зоне контакта матери и плода, способствует наличие ^2-клеток. Полагают, что подобно тому, как это происходит при иммунологических реакциях на аллотрансплантат или опухоль, антитела не только не играют существенной деструктивной роли, но даже предохраняют клетки плода от повреждения факторами клеточного иммунитета.
Широко известный и, возможно, единственный пример повреждающей роли антител, синтезируемых в организме матери и направленных против антигенов плода, - анти^^антитела, вызывающие гемолитическую болезнь новорожденных (см. раздел 4.5.2.1). Пока трудно сказать, почему среди огромного множества антигенов, различных у плода и матери, именно резус-антигены (особенно D) не только оказываются иммуногенными, но и определяют деструктивный эффект гуморального иммунитета. Вероятно, одна из причин - высокая чувствительность эритроцитов, на которых локализуется этот антиген к комплементзависимому лизису. Особое место этого антигена среди эритроцитарных аллоантигенов, по-видимому, обусловлено его наибольшей иммуногенностью.
Систему комплемента, безусловно, нужно рассматривать в ряду потенциальных эффекторных факторов повреждения плода, особенно если учесть синтез антител, способствующих проявлению его активации по классическому пути на клетках плода. Серьезный барьер для транспорта антител и активации комплемента - трофобласт. В клетках трофобласта активно функционирует система контроля и инактивации комплемента: на них повышен уровень экспрессии молекул CD46, CD59, фактора DAF, относящихся к этой системе.
Материал, приведенный выше, свидетельствует о том, что, несмотря на наличие трофобластного барьера, изолирующего MHC-несовместимый плод от иммунной системы матери, существует реальная возможность сенсибилизации матери антигенами плода. Для предотвращения этого в плаценте реализуются разнообразные защитные механизмы, пресекающие развитие иммунных атак. Среди таких механизмов особенно нужно выделить механизмы, направленные против синтеза провоспалительных и TW-цитокинов, способствующих отторжению чужеродных тканей. Напротив, выработка их антагонистов - супрессорных и ^2-цитокинов - поддерживается. Наконец, первостепенную роль в защите плода играет целая система регуляторных Т-клеток, мобилизуемых в зону контакта плода и матки или формирующихся местно. Эти клетки активно блокируют проявления иммунной агрессии против плода.
В результате, хотя при беременности происходят разнообразные иммунные процессы, свидетельствующие о распознавании иммунной системой матери антигенов плода, эти процессы не являются деструктивными. Более того, определенная степень иммунной активации даже благоприятна для поддержания беременности. Среди иммунологических причин выкидышей наряду с факторами, обусловленными тканевой несовместимостью, фигурирует отсутствие или недостаточная выраженность антигенных различий, в первую очередь различий по системе MHC. Акт родов имеет в своей основе (наряду с гормональными) факторы иммунологической природы, в первую очередь, снятие запретов на иммунную реакцию отторжения вследствие быстрого снижения содержания регуляторных Т-клеток. Поэтому в механизме родов определенная роль принадлежит иммунологическим механизмам отторжении несовместимых тканей.

В настоящее время в результате исследований создана стройная теория функциональной системымать - плод, имеющая очень большое значение для самой широкой акушерской практики. Обоснование и развитие этой концепции дало возможность с новых позиций оценить все те многообразные изменения, которые происходят в организме матери и плода при физиологически протекающей беременности.

В результате многочисленных теоретических и клинических исследований было установлено, что изменения состояния матери во время беременности активно влияют на развитие плода. В свою очередь состояние плода также небезразлично для матери. Доказано, что плод не является чем-то пассивным, как это считали ранее. От плода в различные периоды внутриутробного развития исходят многочисленные сигналы, посылаемые через различные системы его организма, которые воспринимаются соответствующими системами матери и под влиянием которых изменяется деятельность многих органов и функциональных систем материнского организма. Все это позволило обосновать стройную теорию о существовании во время беременности многозвеньевой системы мать - плод. Основным звеном, связывающим плод с матерью, является плацента.

52Онтогенез - это полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях развития. Он начинается образованием зиготы и заканчивается смертью.

У многоклеточных животных важную роль в регуляции онтогенетических процессов играют эндокринная и нервная системы. В онтогенезе высших животных выделяют следующие этапы (периоды) онтогенеза:

ü предзародышевый (преэмбриональный) – развитие половых клеток (гаметогенез) и оплодотворение;

ü зародышевый (эмбриональный) – развитие организма под защитой яйцевых и зародышевых оболочек или под защитой материнского организма;

ü послезародышевый (постэмбриональный) – до достижения половой зрелости;

ü взрослое состояние – размножение, забота о потомстве, старение и гибель.

Кроме того, в рамках эмбрионального периода различают следующие типы онтогенеза:

ü первично-личиночный – личинка способна к самостоятельному существованию (паренхимулы губок, планулы кишечнополостных, трохофоры полихет, головастики амфибий);

ü неличиночный (яйцекладный) – прохождение ранних этапов гисто- и морфогенеза под защитой яйцевых оболочек (представители губок, кишечнополостных, кольчатых червей, ракообразных и многие другие группы, утратившие первично-личиночные стадии) и зародышевых оболочек (насекомые с прямым развитием, яйцекладущие амниоты);



ü внутриутробный – зародыш развивается под защитой материнского организма; при этом различают яйцеживорождение (морфологических связей между зародышем и материнским организмом не возникает), истинное живорождение (у плацентарных млекопитающих) и множество промежуточных типов (например, у живородящих акул, у сумчатых млекопитающих).

Смена типов эмбрионального развития повышает независимость гисто- и морфогенеза от внешней среды, способствует автономизации онтогенеза и возможности выхода в новую адаптивную зону.

В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами - фенотип. В процессе развития организм закономерно меняет свои характеристики, оставаясь тем не менее целостной системой. Поэтому под фенотипом надо понимать совокупность свойств на всем протяжении индивидуального развития, на каждом этапе которого существуют свои особенности.

53Индукция (от лат. inductio - побуждение, наведение) в эмбриологии - воздействие одних частей развивающегося зародыша (индукторов) на другие его части (реагирующую систему), осуществляющееся при их контакте и определяющее направление развития реагирующей системы, подобное направлению дифференцировки индуктора (гомотипическая индукция) или отличное от него (гетеротипическая индукция). индукция была открыта в 1901 немецким эмбриологом Х. Шпеманом при изучении образования линзы (хрусталика) глаза из эктодермы у зародышей земноводных. При удалении зачатка глаза линза не возникала. Зачаток глаза, пересаженный на бок зародыша, вызывал образование линзы из эктодермы, которая в норме должна была дифференцироваться в эпидермис кожи. Позже Шпеман обнаружил индуцирующее влияние хордомезодермы на образование из эктодермы гаструлы зачатка центральной нервной системы - нервной пластинки; он назвал это явление первичной эмбриональной индукцей , а индуктор - хордомезодерму - организатором. Дальнейшие исследования с удалением частей развивающегося организма и их культивированием по отдельности или в комбинации и пересадкой в чуждое им место зародыша показали, что явление индукции широко распространено у всех хордовых и многих беспозвоночных животных. Осуществление индукции возможно лишь при условии, что клетки реагирующей системы компетентны к данному воздействию, т. е. способны воспринимать индуцирующий стимул и отвечать на него образованием соответствующих структур.



В процессе развития осуществляется цепь индукционных влияний: клетки реагирующей системы, получившие стимул к дифференцировке, в свою очередь часто становятся индукторами для других реагирующих систем; индукционные влияния необходимы и для дальнейшей дифференцировки реагирующей системы в заданном направлении. Способность клеток, дифференцирующихся под индуктивным воздействием, самим индуцировать дифференцировку новой группы клеток получило название вторичной индукции.

Во многих случаях установлено, что в процессе индукции не только индуктор влияет на дифференцировку реагирующей системы, но и реагирующая система оказывает на индуктор воздействие, необходимое как для его собственной дифференцировки, так и для осуществления им индуцирующего влияния, т. е. что индукция - взаимодействие групп клеток развивающегося зародыша между собой. Для ряда органогенезов показано, что в процессе индукции из клеток индуктора в клетки реагирующей системы переходят вещества (индуцирующие агенты), которые участвуют в активации синтеза специфических информационных РНК, необходимых для синтеза соответствующих структурных белков в ядрах клеток реагирующей системы.

Действие индукторов, как правило, лишено видовой специфичности. Органоспецифическое действие собств. индукторов может быть в эксперименте заменено действием ряда органов и тканей зародышей старшего возраста и взрослых животных (чужеродные, или гетерогенные, индукторы) или выделенными из них химическими веществами - индуцирующими факторами (напр., из туловищных отделов 9-11-дневных куриных зародышей выделен т. н. вегетализующий фактор - белок с мол. м. ок. 30 000, вызывающий в компетентной эктодерме гаструлы земноводных образование энтодермы и вторично - хорды, мышц и др. производных мезодермы). Действие индукторов может быть имитировано обработкой клеток компетентной ткани более простыми химическими соединениями, например солями натрия и лития, сахарозой, а также некоторыми повреждающими клетки воздействиями; по-видимому, при этом в клетках высвобождаются собств. индуцирующие факторы, находившиеся в них в связанном состоянии. Такую индукцию иногда наз. эвокацией, а индуцирующие стимулы- эвокаторам индукции.

54Онтогенез, или индивидуальное развитие организма, осуществляется на основе наследственной программы, получаемой через вступившие в оплодотворение половые клетки родителей. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами - фенотип. Ведущая роль в формировании фенотипа принадлежит наследственной информации , заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных генов.

Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препятствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления

Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной про­граммы, обозначают как среду 1-го порядка . Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка , как совокупности внешних по отношению к организму факторов.

Критические периоды : зигота, имплантация, роды.

Периоды наибольшей чувствительности к повреждающему действию разнообразных факторов получили название критических, а повреждающие факторы - тератогенных

Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов.

П.Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыша, второй - с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека - на конец 1-й -начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки.

Факторы, оказывающее поврежденное воздействие, не всегда представляют собой чужеродные для организма вещества или действия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие но в других концентрациях с другой силой, в другое время (кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение).

55Постнатальный (постэмбриональный) онтогенез начинается с момента рождения или выхода организма из яйцевых оболочек и продолжается вплоть до смерти живого организма. Этот период сопровождается ростом. Он может быть ограничен определенным сроком или длиться в течение всей жизни.

Различают два основных типа постэмбрионального развития:

Прямое развитие;

Развитие с превращением или метаморфозом.

В случае прямого развития молодая особь мало, чем отличается от взрослого организма и ведет тот же образ жизни, что и взрослые (наземные позвоночные).

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й - 10-й день - новорожденные; 10-й день - 1 год - грудной возраст; 1-3 года - раннее детство; 4-7 лет - первое детство; 8-12 лет - второе детство; 13-16 лет - подростковый период; 17-21 год - юношеский возраст; 22-35 лет - первый зрелый возраст; 36-60 лет - второй зрелый возраст; 61-74 года- пожилой возраст; с 75 лет - старческий возраст, после 90 лет - долгожители. Завершается онтогенез естественной смертью.

При развитии с метаморфозом из яйца появляется личинка, порой внешне совершенно не похожая и даже отличающаяся по ряду анатомических признаков от взрослой особи. Часто личинка ведет иной образ жизни по сравнению с взрослыми организмами (бабочки и их личинки гусеницы). Она питается, растет и на определенном этапе превращается во взрослую особь, этот процесс сопровождается весьма глубокими морфологическими и физиологическими преобразованиями. В большинстве случаев организмы не способны размножаться на личиночной стадии. Аксолотли - личинки хвостатых земноводных амбистом - способны размножаться, при этом дальнейший метаморфоз может и не осуществляться вовсе. Способность организмов размножаться на личиночной стадии называется неотенией.

Роль эндокринных желез в регуляции жизнедеятельности организма в постнатальном периоде очень велика. Важен гормон соматропин, выделяемый гипофизом с момента рождения до подросткового периода. Гормон щитовидной железы - тироксин - играет очень большую роль на протяжении всего периода роста. С подросткового возраста рост контролируется стероидными гормонами надпочечников и гонад. Из факторов среды наибольшее значение имеют питание, время года, психологические воздействия.

Взаимоотношения материнского организма и плода во внутриутробном периоде. Индивидуальная история особи начинается в тот момент, когда происходит зачатие -- слияние мужской и женской половых клеток и образование зиготы. Зигота у всех живородящих существ, включая человека -- это уже организм, но еще не особь, поскольку она не может существовать самостоятельно, вне материнского тела. Питание такое существо получает вначале за счет диффузии из окружающей его жидкости. На этом этапе своего развития существо называется эмбрионом. Вскоре, однако, ему требуется значительное увеличение потоков питательных веществ и кислорода, происходит формирование плаценты -- специального сосудистого сплетения, которое обеспечивает тесную связь между организмом матери и ее развивающимся потомком. Живое существо в таком состоянии называется плодом. Плод развивается благодаря тому, что имеет самую тесную гуморальную связь с материнским организмом, получая от него все необходимые питательные вещества, а также многие информационные молекулы, которые существенно влияют на состояние организма плода. Со своей стороны, плод также оказывает влияние на материнский организм, причем иногда между ними даже возникают острые противоречия (например, иммунная несовместимость групп крови), способные повредить как материнскому организму, так и плоду. При этом плод нельзя рассматривать как какой-либо орган или вырост материнского организма: никаких нервных связей между организмом матери и плодом нет. Он имеет вполне самостоятельную, замкнутую кровеносную систему, а взаимодействие (обмен веществ) материнского организма и плода осуществляется через плаценту -- специальное образование, в котором кровеносные капилляры матери и плода на большой поверхности разделяются лишь тонким слоем ткани, составляющим плацентарный барьер. Через этот барьер свободно проникают все необходимые плоду питательные вещества, продукты метаболизма, а также разнообразные молекулы биологически активных веществ (БАВ).

Находясь в чреве матери, плод не испытывает нужды самостоятельно поглощать пищу и кислород, защищаться от атмосферных осадков или заботиться о поддержании температуры своего тела. Все это обеспечивает ему материнский организм. Однако благодаря разворачиванию генетической программы в организме плода постепенно созревают все те физиологические механизмы, которые понадобятся ему с первой минуты самостоятельной жизни.

Иммунологические отношения в системе мать-плацента-плод - физиологических процесс, направленный на создание необходимых условий для развития плода в организме матери. Иммунологические отношения в системе мать-плацента-плод строятся так, чтобы не только защитить плод от неблагоприятного воздействия факторов окружающей среды, но и создать дополнительный внешний стимул для его развития.

В течение беременности в организм матери поступают чужеродные антигены плода. Отсутствие активной специфической реакции при нормально протекающей беременности объясняется, вероятно, перестройкой иммунологической реактивности. Важный фактор защиты плода -- иммунологическая толерантность матери к антигенам плода отцовского происхождения, которая проявляется в избирательности действия на антигены плода в виде полной ареактивности организма по отношению к одному антигену и различной степени снижения иммунологической чувствительности к другому антигену. Блокирующие антитела матери, направленные на антигены плода отцовского происхождения, нейтрализуют антигенные детерминанты в пограничных тканях последа, не допуская прямого контакта с иммунокомпетентными клетками организма матери, и т. о. препятствуют развитию реакций клеточного иммунитета, играющих главную роль в процессе отторжения аллотрансплантата.

Подавлению клеточного иммунитета способствует также повышенный уровень некоторых гормонов (ХГ, кортизола, прогестерона, эстрогенов). При беременности также увеличивается концентрация ряда белков сыворотки крови, обладающих иммуносупрессивными свойствами. Иммунолчгическая толерантность матери формируется под влиянием не только факторов внутренней среды собственного организма, но и клеточных и гуморальных факторов плода. Фетальные лимфоциты могут подавлять иммунологическую активность лимфоцитов матери. Следовательно, пролиферативная активность лимфоцитов и, вероятно, всех других клеток материнского происхождения, попавших в организм плода, будет подавлена, что исключительно важно в охране генетической индивидуальности плода.

Значительная роль в формировании иммунологических отношений в системе мать-плод принадлежит плаценте, где создаются различные условия для прохождения антигенов и иммуноглобулинов в обоих направлениях. Плацента -- достаточно надёжный барьер, препятствующий взаимному проникновению клеток матери и плода, что является определяющим фактором в комплексе естественных механизмов, создающих иммунологическую защиту плода и норм, течение беременности. В процессе беременности развивается специализированная ткань -- трофобласт, служащий барьером между двумя организмами, препятствующим концентрации иммунокомпетентных клеток матери в организме плода, а также их прямому контакту и цитолитическому действию на тканевые структуры плода, сенсибилизации матери трансплантационными антигенами плода.

Иммуносупрессивным действием обладают также плацентарные гормоны (ХГ, ПЛ), трофобластические специфич. антигены (ТБГ, РР5), стероидные гормоны (эстрогены, прогестерон, кортикостероиды), находящиеся на поверхности плаценты в высокой концентрации. Очевидно, функцию локальной иммуносупрессии в плаценте выполняют и местные Т-лимфоциты-супрессоры. Функция иммунологич. барьера выполняется плацентой не только в пределах самого органа, но и вне его. Трофобласт может отдавать в материнский организм целые клетки и отд. их фрагменты, способные сорбировать аллоантитела в организме матери. В плаценте присутствуют иммунокомпетентные клетки всех типов, не являющиеся её собственными. Иммунокомпетентные клетки матери и плода взаимно сенсибилизированы, и плацента является основным местом их взаимной нейтрализации. Иммуносупрессивные функции плаценты обеспечивает многофакторная система, причём каждый компонент этой системы имеет определенные точки приложения и проявляет своё действие в разные сроки беременности. Нарушение иммунологических отношений в системе мать-плацента-плод приводит к тяжёлым осложнениям беременности.



Похожие публикации